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ent decreases the critical distance but increases the critical 
Reynolds number. It is also seen that increasing surface 
tension increases both Rec and x¢ and has a stabilizing effect. 

surface tension. Journal of the Chinese Society of Mech- 
anical Engineers, 1996, 17-2, 197-203. 
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APPENDIX 

The authors extend Onsal and Thomas' studies [5] and 
correctly consider the surface tension variation caused by the 
interracial temperature fluctuation through wave motion. 
The calculated Rec is derived as 

Re, = L~-~  We~-~aJ " (AI) 

When the surface tension is uniform (i.e. Ca = 0), the cal- 
culated Rec shown in the following equation is the same as 
the result obtained by Onsal and Thomas. 

F75 N ]3/11 Re~=LT~ o-J - (A2) 

The critical distance is derived as 

i t /3p \4 25  ~[8  I WeCa) 8 ~7] -'/~' 

(A3) 

Similarly, for Ca = 0, eqn (A3) becomes 

1F fc  \7 n3v 9 \ql / l l  
Xc = _|(75o.0)41~p| r " | /  (A4) 

4 L \kC} g5(1 _T)a  / J " 
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INTRODUCTION 

As highlighted by a number of  recent studies [1-2], the design 
of high temperature components, ceramics in particular, is a 
difficult process because of  the often conflicting thermal and 
mechanical criteria that define their service. These "conflicts" 
will no-doubt increase as machines and materials are pushed 

to their strength and temperature limits in the search for 
improved efficiency and cost effectiveness. Because of  the 
increasingly severe conditions that components are expected 
to endure, proactive design methodologies using predictive 
thermal and stress models are necessary to expose and 
explore all threats to component safety during typical service 
conditions. Yet, any realistic modeling of  these potentially 
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NOMENCLATURE 

substrate thickness q)(t) 
measured thermocouple response 
themmcouple wire radius W(t) 
Four!ier number like dimensionless time, 
0CSb/*/r2 fl 
dimensional time 6~0 - 6~s 
integ:ral-order polynomial coefficients 6b~- 5~3 
half-order polynomial coefficients x 
dimeasionless constant, fl/(8/n 2 + r) 
dimeasionless constant, 4/(8/n + fin) 
dimensionless constant, C2- 1. 

Subscripts 
Greek symbols Sb 

AT(t) substrate temperature forcing function Tc 

unit response of an intrinsic thermo- 
couple 
function defined by equation (15) 
thermal diffusivity ratio, ~T¢/C~Sb 
dimensionless constant, x/~/~ 
integral-order correction functions 
half-order correction functions 
thermal conductivity ratio, 
kTc/ksb. 

substrate 
thermocouple. 

complex service conditions will usually require precise tem- 
perature measurements taken from actual components 
and/or scaled prototypes. 

Although many temperature measurement techniques 
exist, surface mounted thermocouples represent one of the 
most practical means of monitoring surface temperatures 
over a wide range of values and complex geometries. Never- 
theless, the use of thermocouples are not without difficulties 
because of the deleterious influences of the mass of the ther- 
mocouple, contact resistance and the problems of debonds 
from the surface [311, as well as stray heat transfer to the 
surrounding environment. To offset the potentially sig- 
nificant errors that may result from any combination of 
these factors a number of useful, albeit empirically based, 
thermocouple corrective measures have been developed over 
the years [4-6]. Unfortunately, these methods required exten- 
sive calibration and testing (with their own inherent errors) 
to determine the correction factors. Hence, the accuracy and 
practicality of these methods for industrial applications can 
become limited. 

Fortunately, more recent analytical solutions using 
Laplace transforms [7-8] have offered significant improve- 
ments to the resolution of errors without extensive cali- 
bration and reliance on empirical constants. Nonetheless, 
their utility in correcting the measurement of the complex 
temperature histories seen in industrial service is limited in 
part, by the assumptions pertaining to how the substrate 
temperature is changing with times. Hence, while all of the 
corrective measures discussed above have been helpful in 
analyzing and correcting temperature data, the usefulness of 
the solutions is ultimately limited by their ability to accu- 
rately describe increasingly complex heat transfer events. 

The purpose of this paper is, therefore, to derive correction 
functions for intrin,;ic thermocouples with a response mod- 
eled by a versatile polynomial based on lower-order integral- 
and half-order powers of time that should encompass a wide 
range of substrate temperature histories. Furthermore, to 
facilitate the adaptation of the solutions to an arbitrary mea- 
sured temperature history, the correction functions are 
derived individually for each half- and integral-order poly- 
nomial component. 

ANALYTICAL CONSIDERATIONS 

The problem at hand is to derive useful analytical solutions 
for a thermally thick (L/r > 10) substrate temperature his- 
tory based on the Jresponse measured by an intrinsic ther- 
mocouple (i.e. no junction height) as shown by Fig. 1. Under 
the assumption of constant thermal properties for the ther- 

mally thick substrate and thermocouple, the principal of 
superposition may be used to relate the thermocouple's 
response R(t), to an arbitrary substrate temperature loading 
rate AT(t), through the use of Duhamel's integral : 

R(t) = ~ AT(Q "d~(t-z)dz (1) 

where ¢~(t) is the kernel and represents the area-averaged 
response ofa thermocouple to a unit step temperature change 
and the variable t represents a Fourier number like dimen- 
sionless time parameter, For an intrinsic thermocouple with- 
out contact resistance and no appreciable stray heat transfer 
to the surrounding environment, the late time (t > 0.1) unit 
response for the thermocouple is defined as [7] : 

• (t) = 1-C~ exp(C22t)[1-erf(C2,,/t)] (2) 

where 

and 

C, =p / (8 / .2+p)  (3) 

C: = 4/(8/~ + flTr). (4) 

An estimation of the actual substrate temperature history 
may then be obtained by first approximating the measured 
response R(t), as the sum of any combination of integral- 
and half-order polynomial terms (aj and bj) in non- 
dimensional time t, such that : 

R(t) = ao + ~ [aflJ +bjd ,/2]. (5) 
j=l  

Restricting the range of m to 3 and the corresponding highest 
powers of the integral and half-order terms to 3 and 5/2, 
respectively, to minimize the likelihood of any unstable curve 
oscillations around individual data points, a general solution 
may then be realized by substituting equations (2) and (5) 
into equation (l), taking the Laplace transform and 
rearranging terms : 

R(~) 
aT(s) (6) 

s" ~(s)" 

A substrate forcing function can then be directly calculated 
if equation (6) can be inverted either analytically or numeri- 
cally. Fortunately, the direct inversion of equation (6) with 
all of the individual components of equation (5) is possible 
and yields the following general expression for a substrate 
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Fig. 1. Idealized intrinsic thermocouple and thermally thick substrate ~eometry without contact resistance 
or stray heat transfer to the surrounding environment. 

surface temperature as defined by the polynomial 
coefficients. 

AT(t) = aof~o(t)+ ~ [ajfaj(t)+bjrbj(t)]. (7) 
j=l 

For equation (7), the polynomial based correction functions 
(6,j and ~bj) are defined as : 

~.o(0 = l + ~  -C~( l+C~)~ ' ( t )  (8) 

~'22[ C2 2C2~ ~ 7 C~ ~ ~ -I ~P(t) 6.,(t) = t+  C3+ C2., /~ 

(9) 

~o~(O=,2+2c,[C~ +c,t+ c~ 
C~ Lc] C3~t 

C 5 2C~x/t 4C2t 3/2 ~3-3/~3V(t)7 
(lO) 

6C, ~C~ + C]t + C3t_~ 2 6 2C~tt  
6~3( t )=t3+ c---(Lc~ c~ 2 + c ~ _ +  ~_ 

4C~t3/2 16C2t5/2 C7 7 
+ - - +  ~ W ( t ) ]  (11) 3c~  30~ 

CI N~ C3 2 6bt(t) = ~tt+ ~-2 [C2+~--C3~(t)]  (12) 
2C2 L x/z~t d 

Oh2(/) = t3/2+ 3CI%/~[C~+c2t+ C 3 

4c~ L~ c k f ~  

2C3 x/~tt C 4 

52 1 5 c , ~ / ~ F c ~  c~t  t 2 

~ ( ' )  = ~ ' + -  8c~ Lc~ + c-7 + 2c--~ 

C53 4C3~t 4C3t 3/2 C 6 ] 
+C24 ~ + CExf ~ d ~ ~ V ( t )  (14) 

where the recurring term ~(t)  seen in equations (8)-(14) 
can be simplified to contain the exponentially-scaled error 
function : 

• ( t ) = e x p  - -  l - e r r  - -  + - -  (15) J] 
provided 

C3 = CI - 1. (16) 

DISCUSSION 

The derived solutions along with a relatively simple pro- 
cedure allow the reconstruction of complex substrate tem- 
perature histories from surface temperature data measured 
with intrinsic thermocouples. This procedure requires the use 
of least-squares techniques to fit a polynomial containing 
integral- and half-order terms to empirical temperature data. 
Once the resulting polynomial has been examined for "good- 
ness-of-fit," the coefficients can be used with equations (8)- 
(15) to calculate the thermocouple correction functions. 
Equation (7) can then be used to directly estimate the sub- 
strate forcing function AT(t). 

The ratio of a typical measured response to the calculated 
substrate forcing function during the thermal shock of a 
silicon carbide tube [2] is shown in Fig. 2. As shown by the 
figure, the approximated response of the 0.25 mm diameter, 
chromel-alumel (type-K) intrinsic thermocouple as modeled 
by a cubic polynomial is initially slow relative to the ther- 
mally shocked substrate. However, the derived response of 
the thermocouple does asymptotically approach the sub- 
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Fig. 2. Typical transient response of a 0.25 mm diameter, chromel-alumel (type-k) thermocouple mounted 
to a thermally shocked silicon carbide substrate. 

104 

strate for increasing values of nondimensional time as steady- 
state is approached. Interestingly, the response of the ther- 
mocouple relative to the calculated substrate forcing function 
appears to follow the trends predicted by earlier studies [7] 
for the entire time interval, even though the early solutions 
(t < 0.1) were not used in the derivation. 

Although the inw~rsion process used to derive equations 
(8)-(15) was exact, t]ae ensuing algebraic expression must be 
considered approximate at best because of the reliance on 
interpolating polynomials. In most cases, the validity of the 
temperature data co:~rections will be predicated on the accu- 
racy of the polynomial fit, as well as the soundness of the 
assumptions pertainJing to the absence of both contact resist- 
ance and lateral heat transfer to the surrounding environ- 
ment. However, the significance of the approximation may 
be offset by the possibility that a carefully applied polynomial 
will also tend to smooth out experimental errors that could 
come from a large number of independent sources. 

While this study was restricted to maximum polynomial 
powers of 3 and 5/2 for integral- and half-order terms, respec- 
tively, higher-order terms may also be readily evaluated in 
closed form. However, the unstable curve oscillations around 
individual data points associated with higher-order poly- 
nomials may begin to adversely influence the corrections. 
This may also be 1:rue if unconstrained, piece-wise poly- 
nomials such as spli:aes are used to interpolate the measured 
temperature historic s. In these instances, it may be advisable 
to use smoothed or tensioned splines. Although not explored 
in this study, alternate substrate histories defined by 
exponentials or periodic functions may also be directly or 
numerically inverted. 
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